HAAR WAVELET METHOD FOR SOLVING STIFF DIFFERENTIAL EQUATIONS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haar wavelet method for solving stiff differential equations

Application of the Haar wavelet approach for solving stiff differential equations is discussed. Solution of singular perturbation problems is also considered. Efficiency of the recommended method is demonstrated by means of four numerical examples, mostly taken from well-known textbooks.

متن کامل

The Legendre Wavelet Method for Solving Singular Integro-differential Equations

In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.

متن کامل

the legendre wavelet method for solving singular integro-differential equations

in this paper, we present legendre wavelet method to obtain numerical solution of a singular integro-differential equation. the singularity is assumed to be of the cauchy type. the numerical results obtained by the present method compare favorably with those obtained by various galerkin methods earlier in the literature.

متن کامل

HYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...

متن کامل

An Overview of Haar Wavelet Method for Solving Differential and Integral Equations

Investigation of various wavelet methods, for its capability of analyzing various dynamic phenomena through waves gained more and more attention in engineering research. Starting from ‘offering good solution to differential equations’ to capturing the nonlinearity in the data distribution, wavelets are used as appropriate tools that provide good mathematical model for scientific phenomena, whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling and Analysis

سال: 2009

ISSN: 1392-6292,1648-3510

DOI: 10.3846/1392-6292.2009.14.467-481